
DTMM: Deploying TinyML Models on Extremely
Weak IoT Devices with Pruning

Lixiang Han, Zhen Xiao, Zhenjiang Li
Department of Computer Science, City University of Hong Kong, China

Abstract—DTMM is a library designed for efficient deploy-
ment and execution of machine learning models on weak IoT
devices such as microcontroller units (MCUs). The motivation
for designing DTMM comes from the emerging field of tiny
machine learning (TinyML), which explores extending the reach
of machine learning to many low-end IoT devices to achieve
ubiquitous intelligence. Due to the weak capability of embedded
devices, it is necessary to compress models by pruning enough
weights before deploying. Although pruning has been studied
extensively on many computing platforms, two key issues with
pruning methods are exacerbated on MCUs: models need to be
deeply compressed without significantly compromising accuracy,
and they should perform efficiently after pruning. Current
solutions only achieve one of these objectives, but not both. In
this paper, we find that pruned models have great potential for
efficient deployment and execution on MCUs. Therefore, we pro-
pose DTMM with pruning unit selection, pre-execution pruning
optimizations, runtime acceleration, and post-execution low-cost
storage to fill the gap for efficient deployment and execution
of pruned models. It can be integrated into commercial ML
frameworks for practical deployment, and a prototype system
has been developed. Extensive experiments on various models
show promising gains compared to state-of-the-art methods.

I. INTRODUCTION

Current Internet of Things (IoT) systems make wide use
of resource-constrained devices such as microcontroller units
(MCUs) for data acquisition in various sensor network appli-
cations in industry [10], healthcare [13], [41], agriculture [23],
and smart city [40], because MCUs have ultra-low power
consumption, in milliwatts or microwatts [4], [20], which are
suitable for sustainable and widespread deployment. Recent
studies find that running machine learning (ML) models on
such end devices can further provide useful device-side data
processing to avoid frequent data transmissions (thereby re-
ducing energy consumption), preserve data privacy and enable
new application scenarios [12]. Therefore, an emerging field
of tiny machine learning (TinyML) [3], [9], [48] has appeared
recently, focusing on adopting ML models on embedded IoT
devices to expand their reach for ubiquitous intelligence.

However, the size and computation cost of ML models are
usually not small, e.g., on the order of MB [16], [42], which
contradicts to the extremely limited resource on MCUs. For
example, a typical MCU (such as NUCLEO-F446RE) has
only 512 KB of static random-access memory (SRAM) for
temporary runtime data storage, 1 MB of on-chip embedded
flash (eFlash) memory for program storage, and 180 MHz
CPU frequency for task processing. Computation offloading
is recently used to facilitate the deployment of ML models
on MCUs to bypass their resource constraints [19]. However,

Filter 1

Filter k

Structured Unstructured Original

(a)

...
...

(b)

...
...

(c)

...
...

(d)

...

DTMM

filterlet

... Channels

Fig. 1. Illustration of weight pruning to fit TinyML models on MCUs.
Blue squares represent the weights to be pruned. (a) One convolution layer
contains multiple filters. (b) Structured pruning removes all the weights from
the selected filter(s). (c) Unstructured pruning can remove arbitrary weights.
(d) DTMM removes all the weights from the selected filterlets.

offloading relies on additional infrastructure, such as edge for
support, which is not conducive to large-scale deployment. To
achieve fully autonomous operation and local inference, we
revisit model compression and find that weight pruning [21],
[28] is still a viable but underexploited solution.

Commercial ML frameworks, such as Tensorflow Lite Mi-
cro [9] and CMSIS-NN [27], already supports structured
pruning [28], [44], [49], which treats each filter (or other
structures (§VI)) as an atomic unit to remove all weights
of selected filters to reduce the amount of model weights
(Figure 1(b)). Structured pruning is easy to implement, but the
pruned filters may still contain many useful weights, leading to
coarse-grained pruning. The model accuracy drop significantly
when high compression ratios are required on the MCU.

To improve pruning granularity, another solution called un-
structured pruning [15] is proposed to prune arbitrary weights
(Figure 1(c)). It achieves high accuracy by identifying and
removing less important weights, but introduces two unique
challenges on MCUs. First, due to the removal of arbitrary
weights, each unpruned weight needs an index to record its
existence, which incurs significant additional storage costs and
lacks an efficient storage mechanism to fit the MCU’s tight
memory. Second, more importantly, the format of the remain-
ing weights, indicated by their index values, is incompatible
with commercial ML frameworks. It requires non-trivial over-
head to convert these weights prior to inference [32], which
can significantly slow down model inference with low-end
MCU processors (see §III-B for details).

To overcome these problems, we are inspired by recent
attempts [34], [49] to group weights to form new pruning units
with a granularity between entire filters and individual weights
(§VI). We choose to group an entire line of weights at the same
position across all channels in the filter as an atomic pruning

TABLE I
SPECIFICATION COMPARISON BETWEEN MCU AND OTHER PLATFORMS.

“RAS” AND “N” ARE SHORT FOR RASPBERRY AND NUCLEO.

Device Freq. RAM Storage Power
Jetson NX 1.1–1.9 GHz 8 GB 16 GB 20 W
Pixel 5 1.8–2.4 GHz 8 GB 128 GB 1.2 W
RAS Pi 3B 1.2 GHz 1 GB Micro SD 1.3 W
N-F446RE 180 MHz 128 KB 512 KB 0.1 W

unit for the MCU and name it filterlet. Figure 1(d) shows
that two and three filterlets (blue ones) are to be removed
from Filter 1 and k, respectively. Removing weights in the
granularity of filterlets allows more flexible and finer-grained
results than pruning filters, which thus can achieve higher
compression ratio yet with little compromise of accuracy.

However, if we only change the pruning unit to filterlets,
similar limitations to unstructured pruning still exist. The main
reason we use this new unit is because we observe that weights
in each filterlet are stored contiguously on the MCU (§III).
This local memory continuity can be used to design a new
data structure to efficiently store pruned models and a novel
operator to significantly speed up model inference, based on
which we can also devise a specialized scheduler for deriving
the optimal pruning strategy given resource constraints before
actual pruning, resulting in a systematic and practical solution
to deploy TinyML models on MCUs.

In this paper, we enable all these designs in DTMM, a
full-stack library that fills in the important but missing pieces
of post-execution low-cost storage, runtime inference accel-
eration and pre-execution pruning optimization to efficiently
deploy TinyML models on MCUs through pruning. Pruning
using filterlets in DTMM is essentially a hybrid of the two
types of pruning described above to leverage the advantages of
both, but pruning is not the only step in deploying a model, and
DTMM further avoids the respective shortcomings, making the
pruned model finally usable and running on the real device.

We develop a prototype of DTMM, integrate it into Ten-
sorFlow Lite Micro [9] and evaluate its performance on
Arm Corstone-300 of the Cortex-M55 processor [2] using
various models, including VGG-11 [42], ResNet-12 [16] and
YOLO [39] on three datasets: CIFAR-10 [25], Visual Wake
Words (VWW) [8], and Face Detection Dataset Benchmark
(FDDB) [22]. We compare DTMM with state-of-the-art struc-
tured and unstructured methods, CHIP [44] and PatDNN [37].
Overall, DTMM outperforms the structured method CHIP by
reducing model size and inference latency up to 42.8% and
27.7%, respectively, without compromising accuracy. Com-
pared to the unstructured method PatDNN, DTMM achieves
up to 33.7% and 74.6% reduction on model size and infer-
ence latency, respectively, without compromising accuracy. In
summary, this paper makes the following contributions:

• We propose a novel library called DTMM for deploying
TinyML models on weak IoT devices to achieve high
compression ratio, high accuracy and small overhead.

• We choose a suitable pruning unit and design a set of
new techniques for model storage, operator acceleration

and optimization to realize the design of DTMM, which
is compatible to commercial ML frameworks.

• We develop a prototype of DTMM and extensively eval-
uate its performance using different ML models and rich
datasets, showing remarkable performance gains.

II. BACKGROUND

A. Computation Capacity of MCU

MCU [43] is a small computer on a compact integrated
circuit chip with CPU, memories, I/O peripherals, etc.

1) Hardware footprint. MCU is designed with low-end
CPU (with 32–216 MHz operating frequencies, consuming
only milliwatts or microwatts [4]) and extremely small memo-
ries, such as SRAM (for temporary runtime data) in the range
of 8–320 KB [43] and eFlash (for program and data storage) in
the range of 64–1024 KB. The hardware footprint in the table
shows that MCUs are typically small, low-cost and low-power.
These advantages make MCUs economical and sustainable for
widespread deployment in IoT applications [40].

2) Comparison with other platforms. In addition to weak
devices, there are other popular computing platforms in IoT
systems such as edge AI boards (e.g., Jetson NX) [1], mobile
devices (e.g., Pixel 5) [24], [47], and Raspberry Pi (e.g., Pi
3B) [38]. Unlike the low cost of a few dollars for an MCU,
these advanced platforms may cost hundreds of dollars to bring
more computing resources, including a powerful CPU with
GHz operating frequency and at least 1 GB memory. Table I
summarizes the hardware specification differences between
the MCU (e.g., NUCLEO-F446RE) and other computing plat-
forms. In addition, these platforms are equipped with multi-
core CPUs and GPUs. They can divide computing tasks into
multiple threads and assign them to different cores to execute
in parallel [46], which are not supported on MCUs.

B. Use of TinyML in IoT Applications

In smart cities [50], MCUs are widely used in various
sensors for data acquisition [51]. By running TinyML models
locally, they can analyze sensory data and avoid frequent data
transmissions (the main energy consumer [45]), which saves
energy and helps extend the battery life. In tiny autonomous
machines, ML models can also bring intelligence to small
autonomous machines by performing more complex tasks,
such as path planning and navigation in nano-drones [10].
In addition to saving energy, on-device processing can also
preserve data privacy, such as health data on wristbands [13]
and user speech samples in keyword spotting [52].

C. Model Deployment Process on MCU

The process of deploying ML models with pruning on the
MCU follows four main steps:

Step 1): The pruner estimates the importance of each
potential pruning unit (e.g., filterlets), which can be quantified
by various metrics [15], [31]. The pruner then decides which
weight units should be pruned based on the memory budget
and performance requirements. This step in DTMM is handled
by our pruning strategy scheduler in §III-C.

MCU

Inference
Engine

D
e

p
lo

ym
e

n
t

C
o

n
st

ra
in

ts

§3.3 Pruning
Strategy Scheduler

§3.1 DTMM Pruner

Prune model with
filterlet

Retrain

Store in FWCS

§3.2 DTMM
Convolution

Operator

Data-level parallelism

Instruction-level
parallelism

Potential strategy

Strategy estimation

SA optimization

D
TM

M

Pretrained Model Pruned Model

Fig. 2. Overview of the DTMM design.

Step 2): Given a pruning strategy, i.e., which weight units to
prune, the pruner only resets them to zero in this step, because
the model needs to be retrained (or fine-tuned). The retraining
process only updates the unpruned weights.

Step 3): After retraining, the pruner applies the pruning
strategy to remove weights and uses an appropriate data
structure to store the pruned model with reduced model size.
Quantization is also often used to further shrink the model
due to tight memory and flash space on MCUs. This step in
DTMM is covered by our storage structure design in §III-A.

Step 4): The pruned model can then be deployed on the
MCU and operated by the ML framework for execution. Since
commercial ML frameworks currently only support structured
pruning, suitable runtime support is also required for deploy-
ment. A naive solution is to zero-pad the pruned weights to
restore the structure of all filters, but this leads to unacceptable
computational and storage overhead. Hence, we propose a
novel operator design in §III-B that can run DTMM-pruned
models directly to significantly speed up model inference.

III. SYSTEM DESIGN

The architecture of the DTMM design is illustrated in
Figure 2 and consists of three main components:
• DTMM pruner (§III-A): it prunes weights at a granular-

ity of filterlet and stores the remaining discrete weights
with a compact data structure, called FWCS, that is
efficient for both storage and inference.

• DTMM convolution operator (§III-B): it enables un-
pruned weights stored in FWCS to run in existing ML
frameworks without reconstruction overhead, and accel-
erates the inference via single instruction, multiply data
(SIMD) and instruction-level parallelism techniques.

• Pruning strategy scheduler (§III-C): it provides a
pruning strategy for the pruner by formulating the search
of the optimal strategy as an optimization problem to min-
imize the latency with accuracy and memory constraints.

A. DTMM Pruner

We first introduce the design of DTMM pruner, starting
with a discussion of the problems of existing structured and
unstructured pruning methods used on IoT devices.

1) Problems in existing pruning methods: In a convolution
layer, the weights are comprised of a set of filters. Each filter
contains C kernels, and one kernel has H×W weights. Differ-
ent from other platforms, in commercial ML frameworks for
MCUs, weights at the same position across all the channels are

a b c
d e f

h i

C

H

W

d e f

a b c

h igg

Fig. 3. Weights in filters are stored contiguously in physical storage following
a channel-major order. We plot the physical storage in three lines.

stored contiguously in physical storage following a channel-
major order [27], as shown in Figure 3.

Structured pruning. When applying a pruning method, in
addition to storing the values of the unpruned weights, their
positions in the convolution layer should also be recorded
to index the corresponding values from input feature maps
during inference. The structured pruning methods [28], [44]
remove weights at the granularity of filters, thus directly
reducing model size. Meanwhile, it requires no additional
index overhead since all computations are removed for each
pruned filter. However, when the model needs to be deeply
pruned for MCUs, coarse-grained pruning granularity (i.e., the
entire filter) can affect the model accuracy.

Unstructured pruning. These methods [15], [37] preserve
model accuracy by carefully choosing arbitrary weights to
remove, but require extra storage to index the unpruned
weights. Figure 4 shows a typical compressed sparse row
(CSR) structure used in unstructured pruning [32]. Weights
from different filters within the same convolution layer are
stored consecutively. The values of the unpruned weights are
stored in an array Arr, and their positions are represented
using another two arrays cPtr and fIdx. 1 Unstructured
pruning introduces at least one index to record each unpruned
weight, making the model size after pruning much larger than
expected. More importantly, the format of unpruned weights,
indicated by their index values, is not compatible with com-
mercial ML frameworks. Recovering them to an executable
format before inference requires non-trivial overhead, which
can significantly slow down model inference on MCUs [32].

15

ca b
fe hg

i j
on

k
l m

filter 0 filter 1 filter 2

0 1 2 3 4 5 6 7 8 9 10 11
a b c da b c d

e f g h i je f g h i j

k l m n ok l m n o

filter 0

filter 1

filter 2

3 4 7 1 2 3 4 6 9 3 6 9 10 110

4 100

b c d e f g h i j k l m n oa b c d e f g h i j k l m n oaArr

fIdx

cPtr

Fig. 4. Illustration of how unpruned weights from three filters are managed
with CSR structure in unstructured pruning.

Therefore, to prune the ML model with high accuracy, less
storage and small execution overhead for MCUs, we next
introduce the weight pruning with filterlet and the new data
structure design to efficiently store the unpruned weights.

2) Weight pruning and storage in DTMM: Filterlet unit.
For each filter, we group all the weights at the same position
across all channels to form a filterlet. Figure 5 shows how
to utilize filterlet for pruning. In this example, each filter

1cPtr records the index of each unpruned weight in their corresponding
filters. For fIdx, its length represents the amount of remaining filters. Each
element in fIdx is a pointer pointing to the element in cPtr, which stores
the position of the first unpruned element for the current filter.

5

o
n

c
f

b
e

a
d g

l
o

k
n

j
m

filter 0 filter 1 filter 2

0 1 2 3 4 5 6 7 8 9 10 11
a b c d e f

g h i

j k l m n o

filter 0

filter 1

filter 2

9 6 0 93

2 3 30

b c d e f g h i j k l m n oa

Size

Arr

fIdx

cPtr

FWCS

m Filterlet

Fig. 5. Illustration of how weights are pruned with filterlet and how remaining
weights are stored using FWCS.

contains three channels, so a filterlet contains three weights,
e.g., weights 〈m,n, o〉 represent a filterlet of “filter 2”. Since
weights are stored in a channel-major order on MCUs (Fig-
ure 3), all weights in each unpruned filterlet are located in
contiguous space, which enables an efficient operator design
for inference (§III-B). Compared to structured pruning that
regards the whole filter as an atomic unit to prune, filterlet
provides finer granularity to preserve important weights in
each filter for better accuracy (§III-C).
Compressed weight storage. Since each filterlet is part of the
filter, the weights from unpruned filterlet also require extra
storage to record their positions in the filter. To this end,
we employ the key observation that all weights in a filterlet
are located in contiguous space to propose a compact data
structure, called filterlet weight compressed storage (FWCS).
Similar to the unstructured pruning, FWCS stores the values
of the remaining weights in an array Arr. The position
information of each weight is encoded in other three arrays:

1) size: it stores the filterlet size that is measured by the
number of weights. For example, size is 3 in Figure 5.

2) cPtr: it stores the index of the first weight of a filterlet
in the corresponding filter. Each element of cPtr corresponds
to one filterlet. For example, in Figure 5, the second element
of cPtr is 9, meaning that the index of the first weight d in
the second filterlet (〈d, e, f〉) is 9 in its filter.

3) fIdx: each of its element represents one filter in the
current convolution layer. The value is a pointer to the index in
cPtr, which stores the position of the first remaining filterlet
for the current filter. For example, in Figure 5, the second
element of fIdx represents the second filter (“filter 1”), and
its value 2 means that the first filterlet 〈g, h, i〉 of the second
filter starts from column cPtr[2] (= 6).
The effectiveness of FWCS. Unlike unstructured pruning, we
can store the position of each filterlet instead of individual
weights, leading to a substantial reduction in model size. With
the number of channels C, removing the weight with filterlet
reduces the amounts of indexes by C times. Hence, in Figure 4
and 5, pruning with filterlet results in less storage overhead
with the same number of pruned weights.

In Figure 6, we conduct a preliminary experiment to
compare the model size after pruning between unstructured
pruning and filterlet. We prune 90% weights for five convo-
lution layers with different configurations. Figure 6(a) shows
that FWCS can reduce the model size by 49.6% on average
compared to unstructured pruning.

In addition to reducing model size, pruning with filterlet
also enables efficient model inference. Direct execution of our

Conv1
Conv2

Conv3
Conv4

Conv5
0

20
40
60
80

M
od

el
 S

iz
e

(K
B

) (a)
Original
Unstructured
DTMM

Conv1
Conv2

Conv3
Conv4

Conv5
0

50

100

150

La
te

nc
y

(m
s)

(b)
Original
Unstructured
DTMM

Fig. 6. (a) Storage usage and (b) inference latency of convolution layers with
90% weights pruned by different methods.

pruned model in ML frameworks is slow (§III-B), as FWCS
lacks specialized runtime optimizations. To this end, we fur-
ther design an efficient convolution operator to significantly
speed up model inference. Next, we introduce this operator.

B. DTMM Convolution Operator

1) Convolution operation at nutshell: A convolution layer
performs a convolution operation on its filters and input feature
maps. Each filter slides across the input feature maps, and
the dot product between the filter and input feature maps is
computed to generate the output feature map. Specifically,
each value of the output feature map ox,y,n is computed by:

ox,y,n =
∑H−1

h=0

∑W−1

w=0

∑C−1

c=0
(knh,w,c × fx+h,y+w,c), (1)

where knh,w,c and fx+h,y+w,c are the values of the n-th filter
and input feature maps, respectively.

A naive way to compute Eq. (1) is to use nested loops,
which is very slow. Therefore, ML frameworks for MCUs
typically utilize the single instruction, multiple data (SIMD)
technology to accelerate computation [27]. With SIMD, mul-
tiple operations in difference lanes (operands) are performed
in parallel within an instruction achieving higher throughput.

The SIMD multiply-accumulate (MAC) operation is the
main building block to implement dot product between the
filter and input feature maps in a convolution layer. It computes
and adds the dot product of two numbers to an accumulator
(a = a+b · c). SIMD then exploits the data-level parallelism
of the hardware to increase the speed of computation based
on the maximum lane number of the operands.

2) DTMM convolution with SIMD: SIMD requires the
weights in a filter to be contiguous in physical memory to
efficiently load the weights and corresponding values in input
feature maps for computation. However, due to the fine-
grained weight removal, the unpruned weights of DTMM
pruning (as well as unstructured pruning) become discrete,
preventing a direct adoption of SIMD for speedup.
1) Opportunity. Unlike individual weight removal in unstruc-
tured pruning, the weights of a filterlet are contiguous in the
physical memory since they come from the same kernel po-
sition across all channels. Unpruned weights in a convolution
layer can be discrete, but the local memory continuity of
weights in filterlet brings further opportunities to exploit SIMD
for inference speedup.
2) When SIMD meets filterlet pruning. Figure 7 illustrates
how it works. In this example, a filterlet has eight weights, and
the lane number of the SIMD instruction is four. Since filterlet

a1 b1 c1 d1 e1 f1 g1 h1

a2 c2 e2 g2b2 d2 f2 h2

Filterlet

...... feature
values

Fig. 7. Weights in filterlet can be operated by SIMD.

weights are contiguous in physical memory, SIMD multiply-
accumulate (MAC) can compute the dot product for four pairs
of weights and feature map values in one instruction, instead
of four. The speedup gain increases as the number of SIMD
lanes increases, which is 2–16 in practice.

In general, DTMM convolution works as follows (Algo-
rithm 1). The operator slides over the input feature map during
convolution. For each step of sliding, a patch of the input
feature map is prefetched, from which the operator extracts
the values corresponding to the weights in filterlet through the
index information stored in FWCS. The dot product between
them is then performed using SIMD MAC operations.

Algorithm 1: DTMM Convolution Operator
Input: Input feature maps: I; Filters in FWCS format: W ; Height, width and

channel of output maps: Hout, Wout, Cout; Height and width of
filters: Hker and Wker ; Convolution stride: stride; Number of
SIMD lanes: l;

Output: Output feature maps O;
1 for h = 0 to Hout − 1 do
2 for w = 0 to Wout − 1 do
3 buf ← Prefetch(I, h× stride, w × stride,Hker,Wker) ;

// Fetch data necessary for Oh,w,c computation

4 i← 0 ;
5 for c = 0 to Cout − 1 do
6 for j = W.fIdxc to W.fIdxc+1 − 1 do
7 for k = W.cPtrj to W.cPtrj + W.size− 1 step l do
8 Oh,w,c ← bufk:k+l ·W.arri:i+l + Oh,w,c ;
9 i← i + l;

wlstp.8 lr, %[cnt], 1f
loopStart:

vldrb.8 q0, [%[arr]], #16// Load weights
vldrb.8 q1, [%[in]], #16 // Load feature values
vmladava.s8 %[out], q0, q1 // MAC operation
letp lr, loopStart

 1:
 2:
 3:
 4:
 5:
 6:

wlstp.8 lr, %[cnt], 1f
loopStart:

vldrb.8 q0, [%[arr]], #16// Load weights
vldrb.8 q1, [%[in]], #16 // Load feature values
vmladava.s8 %[out], q0, q1 // MAC operation
letp lr, loopStart

 1:
 2:
 3:
 4:
 5:
 6:

wlstp.8 lr, %[cnt], 1f
loopStart:

vldrb.8 q0, [%[arr]], #16// Load weights
vldrb.8 q1, [%[in]], #16 // Load feature values
vmladava.s8 %[out], q0, q1 // MAC operation
letp lr, loopStart

 1:
 2:
 3:
 4:
 5:
 6:

Fig. 8. Main code block for our convolution operator with SIMD instructions
on Armv8.1-M architecture.

We further transplant Algorithm 1 into the ML framework,
and Figure 8 shows the code block of our operator’s main
operation. In particular, SIMD load vldrb.8 loads operand
data into registers, e.g., q0 and q1, and the SIMD MAC
vmladava.s8 computes dot product between the operand
vectors. If the registers cannot hold a complete filterlet, the
computation is performed in iterations, and wlstp.8 is used
to record the number of iterations in lr. At the end of each
iteration in line-6, lr is decremented by the number of lanes.
If lr is non-zero, computation is repeated starting from line-2.

The speedup of our operator is mainly due to data-level
parallelism, benefiting from the local weight continuity in a fil-
terlet to take advantage of SIMD. In addition to this data-level
speedup, we also observe further acceleration opportunities
through instruction-level parallelism in the next subsection.

Idle time

1 2 3 4 5 6 7 8 9

Load
MAC
Load
Load

MAC
Load
Load
MAC
Load
Load

MAC

(b)

(a)

q0

q1
q0, q1

q2

q0

q2, q0

q0, q2

q2

q0, q1

q1

q0

Fig. 9. (a) Inefficient and (b) improved workflow of operations.

3) Instruction-level acceleration: When our convolution
operator works, we observe that in Figure 8 there are two types
of instructions executed by two different hardware components
on the MCU, including
• memory unit: it executes SIMD loads, and
• arithmetic logic unit (ALU): it executes SIMD MACs.
Since the memory unit and ALU are independent hardware

components, there is an opportunity for these two types of
instructions to be executed in parallel to further speed up
computation, while we encounter the following problem.
1) Problem. Figure 9(a) shows a snapshot of the memory
unit (Load) and ALU (MAC) over time as we apply our
operator to perform convolution. With recent vector processing
technology [33], after partially loading data in the first CPU
cycle, the ALU can immediately use it for computation,
resulting in the overlap of Load and MAC, e.g., in cycle “4”.

We can see that in Figure 9(a), the ALU is idling during
CPU cycles “6” and “7” as it waits for the memory unit to
finish loading the two new operands into registers.2 We find
that the ALU is periodically idle as the memory unit needs to
be loaded with two new values for each MAC computation.
2) Proposed solution. To avoid consecutive memory loads,
we propose to maintain the value of a register, e.g., q0, and
reorder the subsequent computations that require the value in
q0. In this way, we only need to load one new value by the
memory unit in the next period of time, so that the memory
unit and the ALU can work alternatively without the ALU’s
idling waiting, as shown in Figure 9(b), where two MACs
complete in seven CPU cycles vs. nine in Figure 9(a).3

In DTMM, we observe that the above idea applies to
convolutions for the following reason. The default order of
computation is to fix a position in the input feature map and
iterate the dot product for all filters. However, the values in the
feature map change every time because each unpruned filterlet
is in a different position in its filter. Thus, each MAC requires
two memory loads, similar to Figure 9 (a).

However, if we adjust the order of computation by fixing
the filterlet weights in a register (e.g., q0), we can reuse
their index information to alternately load values (at the same

2We introduce a new register q2 in Figure 9(a) to improve execution
efficiency. Executing our code in Figure 8 requires only two registers, but the
next two new values are loaded in cycle “6” (to q0) and “8” (to q1), as the
ALU is still using them in cycle “5”, causing the ALU to wait three cycles
before the next calculation.

3We use two registers q1 and q2 that alternately load new values to
maximize the efficiency of the ALU.

wlstp.8 lr, %[cnt], 1f
loopStart:

vldrb.8 q0, [%[arr]], #16// Load weights
vldrb.8 q1, [%[in1]], #16// Load feature values
vmladava.s8 %[out], q0, q1 // MAC operation
vldrb.8 q2, [%[in2]], #16// Load feature values
vmladava.s8 %[out], q0, q2 // MAC operation
vldrb.8 q1, [%[in3]], #16
vmladava.s8 %[out], q0, q1
vldrb.8 q2, [%[in4]], #16
vmladava.s8 %[out], q0, q2
letp lr, loopStart

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:

wlstp.8 lr, %[cnt], 1f
loopStart:

vldrb.8 q0, [%[arr]], #16// Load weights
vldrb.8 q1, [%[in1]], #16// Load feature values
vmladava.s8 %[out], q0, q1 // MAC operation
vldrb.8 q2, [%[in2]], #16// Load feature values
vmladava.s8 %[out], q0, q2 // MAC operation
vldrb.8 q1, [%[in3]], #16
vmladava.s8 %[out], q0, q1
vldrb.8 q2, [%[in4]], #16
vmladava.s8 %[out], q0, q2
letp lr, loopStart

 1:
 2:
 3:
 4:
 5:
 6:
 7:
 8:
 9:
10:
11:
12:

Fig. 10. Improved convolution operator design using SIMD and instruction-
level acceleration on Armv8.1-M.

position but from different patches of input feature maps) into
q1 or q2 and perform MAC (for q0 and q1/q2). Thus, only
one memory load is required per MAC before all computations
requiring the current filterlet weights are finished, similar
to Figure 9(b). Note that the reordering only changes the
computation sequence, while the result is unchanged.

We incorporate this instruction-level acceleration to upgrade
our convolution operator design in Figure 10. Benefits come
from two aspects. First, it avoids unnecessary idle states to
improve CPU utilization. Second, it also avoids the redundant
load of the same unpruned filterlet weights as they are used
multiply times in the convolution. As shown in Figure 6(b),
this design can reduce the inference latency by an average of
84.61% compared to unstructured pruning.
3) Summary. The key innovation of our acceleration design
is not entirely in the use of SIMD and parallelism. The main
challenge is that the chances of acceleration on MCUs without
rich hardware features are very small. Therefore, we perform
an in-depth analysis of convolutions to find a valuable oppor-
tunity to reshape their computational flow to fit the model
structure and leverage (almost) the only advanced features
(SIMD and parallelism) on MCUs to achieve acceleration.

C. Pruning Strategy Scheduler

A pruning strategy defines which pruning units should be
removed from each layer. By making this strategy, one typical
objective is to minimize the execution latency of the pruned
model while ensuring that the accuracy is not compromised
too much and model size becomes small enough.

1) Constraints of pruning strategy: Before we provide an
overall formulation of the pruning strategy, we need to first
derive the following essential performance metrics to be used.
1) Accuracy. To avoid the impracticality of frequent evaluating
the accuracy of pruned models during solving the pruning
strategy problem, we employ a method inspired by previous
works [15], [31] on estimating the importance of existing
pruning units. We capture the change of loss after pruning
individual units, and require the overall loss change for the
pruned model to be less than a given ∆Lmax, e.g., 0.001, to
bypass deriving the accuracy of pruned models directly. Taylor
expansion [36] is used to measure the change of ∆L:

∆L = |L(D)− L(D | w = 0)| ≈
∣∣∣∣∂L(D)

∂w
w

∣∣∣∣ , (2)

where D is the training dataset and L(D | w = 0) is the value
of loss function when a set of weights w are pruned (set to

zero). The gradient of the loss function to the weights can be
obtained through the backpropagation algorithm.

Now we compute ∆L for each filterlet according to Eq. (2)
and use the error threshold ∆Lmax to obtain the filterlets that
can be removed without exceeding ∆Lmax. Then, we have
the first constraint to ensure the model’s performance after
pruning:

Cacc : ∆L(s) ≤ ∆Lmax, (3)
where s is the decision variable 〈α1, · · · , αi, · · · , αL〉 and
each αi ∈ [0, 1] specifies the percentage of filterlets to be
removed from the i-th convolution layer.
2) Model size and memory consumption. Model size for
flash memory includes the following two parts in DTMM:
• Amount of unpruned weights: Aw =

∑L
i=1 αi × |Ki|,

where |Ki| is the filter size in the i-th convolution layer
and L is the amount of convolution layers.

• Index overhead: Aidx = m0 ×
∑L

i=1(1 − αi) × Ni ×
Hi ×Wi, where m0 is the bit width of each index (e.g.,
16 bits), and the size of rPtr and size in FWCS are
omitted because they are very small.

With m-bit quantization, the model size is computed by:

Size(s) = m×Aw +Aidx. (4)
The memory consumption of SRAM to execute ML models

is dominated by intermediate feature maps during inference.
For DTMM pruned models, the output feature map size for
the i-th convolution layer is: Mi = αi×Ni×FHi×FWi×m,
where FHi and FWi are the height and width of the output
feature map for the i-th convolution layer. During inference,
models are executed layer by layer, and the intermediate fea-
ture maps are released after execution. Therefore, the memory
usage is determined by the maximum memory consumption
between any two adjacent convolution layers:

Ram(s) = maxi{Mi−1 +Mi}, i ∈ [1, L] , (5)
where M0 is the size of the input data to the model.4 Then,
we have the following two memory constraints:

Cmem : Size(s) ≤ Memf ; Ram(s) ≤ Memr, (6)

where Memf and Memr are the constraints of flash memory
and SRAM, respectively.

2) Pruning objective: Within the above constraints, we aim
to find the strategy that leads to the smallest execution latency.
1) Execution latency per layer. We start with the execution
latency Ti of the single convolution operation in convolution
layer i, which consists of three components:

i) Feature fetching latency T ft
i : the time used to fetch a

patch of input feature values, and the volume is the same as
a filter size. So, T ft

i = Hi ×Wi × Ci × tmem, where tmem

is the time to fetch one value, Hi and Wi are the height and
width of the kernel, and Ci is the channel number in layer i.

ii) Computation latency T cm
i : the time used to first index

the corresponding input feature values based on FWCS, and
then compute dot product via SIMD MAC for each unpruned
filterlet. It can be calculated by T cm

i = Ni ×Hi ×Di × (1−

4For ML models with shortcuts, e.g., ResNet, the memory usage can be
estimated from the topology of their computation graph [29].

αi) × (tidx + dCi

l e × tcom), where l is the maximum lane
number supported by SIMD MAC, Ni is the number of filters
in convolution layer i, αi is the percentage of filterlets to be
pruned from this layer, tidx is the time to index a feature value,
and tcom is the time to perform a SIMD MAC.

iii) Post-procesing latency T ps
i : the post-processing time,

T ps
i = Ni× tpost, where tpost is the time of bias addition and

quantization for each output value after the computation.
Therefore, we have Ti = T ft

i +T cm
i +T ps

i , and the execution
latency of the convolution layer i is T̂i = Ti × FHi × FWi,
where FHi and FWi are the height and width of the output
feature map of layer i. Therefore, we propose to perform a
regression on the parameters used in the calculations of T ft

i ,
T cm
i and T ps

i as follows:

f(Ni, Hi,Wi, Ci, αi) = T̂i. (7)

So far, the parameters tmem, tidx, tcom and tpost of exe-
cution latency model f(·) are undetermined. We can then use
the measured latency of different configurations of convolution
layers and the percentage of filterlets to remove to train f(·)
as a regression model. Based on our experiment, we find that
utilizing 10 training samples can yield a low prediction error
of 0.03, as measured by the mean squared error.
3) Pruning strategy. Finally, we formulate the search of the
pruning strategy as an optimization problem to minimize the
overall latency Time(s) =

∑
i T̂i over all the convolution lay-

ers. Given that convolution layers are the most time-consuming
components, other layers (e.g., pooling) have relatively small
impact on the overall model latency, which is not considered
in Time(s). Therefore, we have:

min
s

Time(s), (8)

subjected to Cacc in Eq. (3) and Cmem in Eq. (6). After
decision variable s is solved (e.g., by simulated annealing
(SA) solver), we obtain each αi (∈ [0, 1]), which specifies
the percentage of filterlets to be removed from the i-th layer.

IV. IMPLEMENTATION

1) Hardware. We implement DTMM with the Cortex-M55
processor [2], the latest AI-capable processor with vector
processing (i.e., Helium SIMD extension [33]) for MCUs. The
Cortex-M55 has eight 128-bit vector registers to store operands
for SIMD instructions. Each vector register can be divided into
lanes of width 8, 16 or 32 bits. For example, if each weight of
a model is 8 bits (i.e., 8-bit quantization), a SIMD instruction
can process 16 (=128/8) weights simultaneously. Each Helium
vector instruction requires two CPU cycles. After the data is
partially loaded into a register in the first cycle, the ALU can
immediately use it for computations.
2) Software. The software implementation of DTMM consists
of two parts: offline toolchain and on-device runtime. We
develop the offline toolchain using Python 3.6 and Tensorflow
2.6, and the on-device runtime using C and Helium SIMD
extension in TensorFlow Lite Micro (TFLM) [9].

Offline toolchain. The offline toolchain includes the sched-
uler that determines the pruning strategy, the pruner that

TABLE II
PARTICULARS OF EACH UNPRUNED MODEL WITH 8-BIT QUANTIZATION.

Dataset Model Accuracy (%) Model Size (KB) Memory (KB)

CIFAR-10
(Image Classification)

VGG-11 90.19 1921 64
ResNet-12 90.15 1248 96

VWW
(Visual Wake Words)

VGG-11 86.77 1919 256
ResNet-12 85.23 1246 384

FDDB
(Object Detection) YOLO 60.29 2071 392

performs filterlet-based pruning, and other modules such as
quantization and retraining. To make our storage structure
FWCS used by the models after DTMM pruning compatible
with TFLM, we further update TFLM’s schema.fbs file, a
format library (including metadata and runtime tensors), and
add FWCS as a new format member.

On-device runtime. We implement an on-device runtime
based on TFLM. Our convolution operator is developed using
C and inline Helium assembly. All these updates to TFLM do
not affect its execution on other ML models. In particular, our
convolution operator is launched only if a layer is pruned by
DTMM; Otherwise, the traditional one is used.
3) Models and datasets. We evaluate DTMM with three ML
models widely adopted in the previous studies on MCUs,
including VGG-11 [42], ResNet-12 [16] and YOLO [39],
in three popular ML tasks: image classification, visual wake
words, and objection detection. For the classification tasks of
image classification and visual wake words, we use VGG-11
and ResNet-12. For the object detection task, we use YOLO.

We train these ML models on the following datasets, which
were used in the previous TinyML studies [26], [30]:
• 1) CIFAR-10 [25]: for image classification with 60 K of

32× 32 RGB images of 10 different classes.
• 2) Visual Wake Words (VWW) [8]: for identifying the

existence of person in an image. Images are resized to
64× 64× 3 for more efficient execution on MCUs.

• 3) Face Detection Dataset Benchmark (FDDB) [22]: for
detecting the location and size of all faces in the image.
Images are resized to 112× 112× 3 for MCUs.

Table II summarizes the accuracy, model size, and runtime
memory for each unpruned model with 8-bit quantization.
4) Training and pruning. We use the above three datasets to
train a corresponding version of each model and then perform
pruning, 8-bit quantization, and fine-turning on each version
of the model before execution. For CIFAR-10, we follow
the official training and testing division (5:1). We split the
other two datasets (VWW and FDDB) into 70% and 30% for
training/fine-tuning and testing, respectively.

V. EVALUATION

A. Overall performance

Methods. We compare the following pruning methods:
1) CHIP [44]: a state-of-the-art structured pruning that

detects and removes unimportant filters using the channel
independence of the feature maps generated by each filter.

2) PatDNN [37]: a state-of-the-art unstructured pruning
method. It includes an inference engine specifically for mobile

VGG-11 ResNet-12
0

100
200
300
400

M
od

el
 S

iz
e

(K
B

)

(a)

327
406

194 247
187

270

VGG-11 ResNet-12
0

100
200
300

(b)
301

182196
135

179
104

YOLO
0

100
200
300

(c)
311 291

193
CHIP
PatDNN
DTMM

VGG-11 ResNet-12
0

200
400
600
800

La
te

nc
y

(m
s)

188 234

486
646

136
255

VGG-11 ResNet-12
0

500
1000
1500
2000

572 362

1688
1406

550 436

YOLO
0

500
1000
1500
2000

465

1773

451

CHIP
PatDNN
DTMM

VGG-11 ResNet-12
0

50

100

M
em

or
y

(K
B

)

56

93

56
87

53

93

VGG-11 ResNet-12
0

100
200
300
400

232 240256
384

248 248

YOLO
0

100
200
300
400

245
380

233 CHIP
PatDNN
DTMM

Fig. 11. Overall performance of (a) VGG-11 and ResNet-12 models on CIFAR-10, (b) VGG-11 and ResNet-12 models on VWW, and (c) YOLO model on
FDDB. The latency is measured when the processor operates at 120 MHz.

devices. Since this engine is not MCU-compatible due to
its reliance on the high-level parallel computing framework
OpenCL, it is not included in the evaluation, and we implement
a sparse convolution operator in TFLM for its inference.

3) DTMM: the method proposed in this paper.
Performance comparison. In this experiment, we compare
the model size, execution latency, and runtime memory con-
sumption of each model by maintaining model accuracy during
pruning, i.e., with accuracy loss less than 0.5%. For the
object detection task, accuracy is measured using the average
precision (AP). The resource constraints for flash and SRAM
are 512 KB and 256 KB, respectively.

1) Model size. Figure 11 first shows the size of each model
pruned by different methods. The unstructure-based PatDNN
obtains a smaller model size than the structure-based method
CHIP. DTMM can further reduce the model size due to its
efficient storage design, outperforming CHIP and PatDNN by
39.53% and 11.92% on average, respectively.

2) Latency. The second row in Figure 11 shows the latency
of each model after pruning. Although PatDNN can achieve
smaller mode sizes, its pruned models execute much slower
than CHIP due to the complexity of handling discrete weights
by the CSR structure during inference. Unlike PatDNN,
DTMM also achieves small latency. Overall, the latency per-
formance of DTMM outperforms CHIP and PatDNN by an
average of 1.09% and 68.70%, respectively.

3) Runtime memory. The runtime memory should fit within
the SRAM of the device, and the runtime memory limit is set
to 256KB in the evaluation. Both DTMM and CHIP can satisfy
this constraint, but PatDNN may violate it in some cases due
to the high indexing overhead.

Accuracy as model size decreases. We prune more weights
for each method and examine the resulting accuracy change
of each pruned model. To this end, we relax the accuracy loss
requirement in our pruning strategy scheduler to prune each
model for a smaller size. We also prune each model to the
same smaller size for other two methods. Due to the page
limit, Figure 12 (a–c) only plots the results of VGG-11 and
ResNet-12 on CIFAR-10 and YOLO on FDDB. We can see
that DTMM achieved the highest accuracy of pruned models
than other two pruning methods (with similar model sizes) in

most cases. The results are similar on other datasets.
Analyze pruned models. We first analyze the percentage of
weights pruned on each layer. Figure 12(d) shows the result
of each layer of VGG-11 on CIFAR-10, e.g., 56.9% of the
weights are pruned from layer “L1”. With DTMM, weights can
be pruned selectively from each layer. Overall, 37.5–99.0% of
the weights from these layers are pruned.

We then analyze the components of each model pruned by
DTMM. As shown in Figure 13, 77.2–86.3% of the model size
after DTMM pruning is the weights. Indexing (and storage)
overhead and other overhead (e.g., quantization parameters and
metadata) are only 1.1–3.2% and 12.6–13.9%, respectively,
which shows the effectiveness of our FWCS structure design.
In contrast, for similar model sizes, the useful weights of each
model pruned by PatDNN only count as 27.9–28.4%, whereas
its indexing and storage overhead is large, which explains why
the model pruned by PatDNN loses more accuracy.

B. Micro-benchmarks

Ablation Study. We first conduct an ablation study to examine
the efficacy of two designs in our convolution operator. To this
end, we develop two intermediate versions of DTMM:
• “DTMM-w/o-ins”: it removes instruction-level accelera-

tion from our convolution operator.
• “DTMM-w/o-ins-vec”: it completely disables our con-

volution operator and uses scalar instructions instead.
Figure 14 (a) shows that without instruction-level accelera-

tion, “DTMM-w/o-ins” increases model execution latency by
20.8–55.3%. Also, our original convolution operator design
plays a more important role, causing 231.8–635.0% increased
latency if it is disabled. This experiment shows the effective-
ness of our proposed techniques in speeding up the execution
of DTMM pruned models.
Lane number of SIMD instructions. This is an important
factor affecting the efficiency of our convolution operator de-
sign, as it affects how many dot products in convolution can be
performed in parallel. In Figure 14 (b), we measure the latency
of executing five DTMM pruned layers of different sizes by
decreasing the number of lanes from 16 to 4. The results show
that latency increases by an average of 16.2% and 48.9% when
the number of lanes is reduced to 8 and 4, respectively. In
Figure 14 (b), we use convolution layers instead of the whole

110155200
Model Size (KB)

 86
 87
 88
 89
 90

A
cc

ur
ac

y
(%

)

(a)

220260300
Model Size (KB)

87
88
89
90

(b)

CHIP PatDNN DTMM

160230300
Model Size (KB)

 54
 56
 58
 60

(c)

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
0

50

100

Pe
rc

en
ta

ge
 (%

)

(d)

Fig. 12. Accuracy when (a) VGG-11, (b) ResNet-
12, and (c) YOLO are pruned to smaller sizes. (d)
Percentages of VGG-11 weights pruned.

0 50 100 150 200

DTMM

PatDNN
(a)

Weights Indexing + storage Others

0 50 100 150 200 250

DTMM

PatDNN
(b)

Fig. 13. Model size breakdowns for (a) VGG-
11 and (b) ResNet-12 when they are pruned by
PatDNN and DTMM on the CIFAR-10 dataset.

YOLO VGG-11 ResNet-12
0

500
1000
1500
2000

La
te

nc
y

(m
s)

(a)

1914

1000
 846

701

205 308451
136 255

DTMM-w/o-ins-vec
DTMM-w/o-ins
DTMM

Conv1 Conv2 Conv3 Conv4 Conv5
 0
 5

 10
 15
 20

La
te

nc
y

(m
s)

(b)

16-lane SIMD
8-lane SIMD
4-lane SIMD

Fig. 14. (a) Ablation study with three DTMM ver-
sions. (b) Inference latency of convolution layers
when the number of SIMD lanes changes.

model, since the whole model may contain unpruned layer(s)
that are not executed by our operator.

Driven by the success of artificial intelligence, MCU pro-
cessor manufactures begin to introduce SIMD with more lanes
in their products. For example, the latest Cortex-M55 supports
16-lane SIMD MAC, while the second latest high-performance
model Cortex-M7 released in 2014 only supports 2-lane SIMD
MAC. For advanced processors with more lanes, DTMM can
obtain higher speedup gains in the future.

0 15 30 45

Storage Usage (KB)

TFLM+

TFLM

(a)

34

30

0 200 400 600

Epochs

0

100

200

300

Tr
ai

n
in

g
lo

ss

(b)

Prune

Fig. 15. Overhead of (a) storage and (b) training time.

C. System Overhead

Storage overhead. When we include only necessary operators
for the ML models used in the experiments, the size of the
original Tensorflow Lite Micro (TFLM) is 30 KB. In DTMM,
we further integrate our new operator, and its storage overhead
is small, e.g., the size of TFLM with DTMM (TFLM+) only
increases by 4 KB, as shown in Figure 15(a).
Training time. Finally, we study the training behavior of the
model before and after pruning. In Figure 15(b), we train the
original YOLO for 500 epochs. We then use DTMM to prune
and fine-tune the pruned model, which takes about half of the
initial training time to converge again.

VI. RELATED WORKS

ML models on MCUs. Deploying ML models on MCUs leads
to an emerging field TinyML [3], [9], [48] for useful applica-
tions, such as autonomous nano drone [10] and smart health
bracelet [13]. To support efficient model inference on MCUs,
CMSIS-NN [27], microTVM [7], TinyEngine [30] and Tensor-
Flow Lite Micro [9] are proposed. Based on these commercial
frameworks, recent works improve the performance of ML
models on MCUs by recording operator execution to reduce
memory consumption [29], intermittent model execution [14],

model architecture search [11], etc. DTMM is a systematic
solution to enable efficient local inference on MCUs.
Model compression. There are existing studies to compress
ML models on MCUs including knowledge distillation [18],
low-rank factorization [5], and quantization [15]. They are
orthogonal to DTMM and can be used simultaneously. For
example, 8-bit quantization is currently used in DTMM (§IV).

Another popular model compression technique on MCUs
is pruning [15], [44], which can be divided into structured
and unstructured methods. Structured pruning removes model
weights according to a given structure [6], [17], [28], [49],
which might significantly reduce the model accuracy when
the compression ratio is high on the MCU. Unstructured prun-
ing [15], [37] can retain the accuracy. However, models after
pruning perform slowly due to the large overhead [32]. Some
research [34] proposes to group weights to form new pruning
units, which can have different forms by applying different
constraints [37], [49]. Unlike existing works above that focus
on the structural design of pruning units, DTMM can actually
run ML models with discrete weights after pruning on MCUs.
Other methods. In addition to model compression, there have
been works proposed to deploy ML models on MCUs from
other perspectives [26], [35], where computation offloading is
a typical example [19]. However, offloading relies on extra
infrastructure for support, such as edge or cloud, which is
not conductive to large-scale deployment. In DTMM, we
overcome the resource constraints of weak IoT devices to
achieve fully autonomous operation and local inference.

VII. CONCLUSION

This paper presents DTMM, a specialized library for de-
ploying TinyML models on low-end IoT devices like MCUs
with pruning. We choose a suitable pruning unit and propose
a dedicated storage structure to achieve high compression
ratios while maintaining model accuracy. We also design a
new operator, compatible with commercial ML frameworks, to
efficiently execute DTMM pruned models, co-designed with a
scheduler to derive the optimal pruning strategy. Evaluations
show remarkable gains compared to state-of-the-art methods.

ACKNOWLEDGEMENT

This work is supported by the GRF grant (CityU 11202623)
from Hong Kong RGC. Corresponding author is Zhenjiang Li.

REFERENCES

[1] Advanced ai embedded systems — nvidia jetson. https://www.nvidia.
com/en-us/autonomous-machines/embedded-systems/.

[2] ARM Ltd. Arm® Corstone™ SSE-300 example subsystem technical ref-
erence manual. https://developer.arm.com/documentation/101773/latest,
2021.

[3] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, and P. Whatmough. Micronets: Neural
network architectures for deploying tinyml applications on commodity
microcontrollers. In Proc. of MLSys, 2021.

[4] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,
X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, et al. Bench-
marking tinyml systems: Challenges and direction. arXiv preprint
arXiv:2003.04821, 2020.

[5] S. Bhattacharya and N. D. Lane. Sparsification and separation of deep
learning layers for constrained resource inference on wearables. In
Proc. of ACM SenSys, 2016.

[6] S. Chen and Q. Zhao. Shallowing deep networks: Layer-wise pruning
based on feature representations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2018.

[7] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, et al. Tvm: An automated end-to-end
optimizing compiler for deep learning. In Proc. of USENIX OSDI, 2018.

[8] A. Chowdhery, P. Warden, J. Shlens, A. G. Howard, and R. Rhodes.
Visual wake words dataset. arXiv preprint arXiv:1906.05721, 2019.

[9] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden.
Tensorflow lite micro: Embedded machine learning on tinyml systems.
In Proc. of MLSys, 2021.

[10] B. P. Duisterhof, S. Krishnan, J. J. Cruz, C. R. Banbury, W. Fu, A. Faust,
G. C. de Croon, and V. J. Reddi. Learning to seek: Autonomous
source seeking with deep reinforcement learning onboard a nano drone
microcontroller. arXiv preprint arXiv:1909.11236, 2019.

[11] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough. Sparse: Sparse
architecture search for cnns on resource-constrained microcontrollers. In
Proc. of ACM NeurIPS, 2019.

[12] F. Fraternali, B. Balaji, D. Sengupta, D. Hong, and R. K. Gupta. Ember:
energy management of batteryless event detection sensors with deep
reinforcement learning. In Proc. of ACM SenSys, 2020.

[13] B. Fyntanidou, M. Zouka, A. Apostolopoulou, P. D. Bamidis, A. Billis,
K. Mitsopoulos, P. Angelidis, and A. Fourlis. Iot-based smart triage
of covid-19 suspicious cases in the emergency department. In Proc. of
IEEE GLOBECOM Workshop, 2020.

[14] G. Gobieski, B. Lucia, and N. Beckmann. Intelligence beyond the edge:
Inference on intermittent embedded systems. In Proc. of ACM ASPLOS,
2019.

[15] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding.
In Proc. of ICLR, 2016.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proc. of IEEE CVPR, 2016.

[17] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very
deep neural networks. In Proc. of IEEE ICCV, 2017.

[18] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[19] K. Huang and W. Gao. Real-time neural network inference on extremely
weak devices: agile offloading with explainable ai. In Proc. of ACM
MobiCom, 2022.

[20] Q. Huang, Y. Mei, W. Wang, and Q. Zhang. Battery-free sensing
platform for wearable devices: The synergy between two feet. In Proc. of
IEEE INFOCOM, 2016.

[21] Y. Huang, X. Qiao, J. Tang, P. Ren, L. Liu, C. Pu, and J. Chen.
Deepadapter: A collaborative deep learning framework for the mobile
web using context-aware network pruning. In Proc. of IEEE INFOCOM,
2020.

[22] V. Jain and E. Learned-Miller. Fddb: A benchmark for face detection in
unconstrained settings. Technical Report UM-CS-2010-009, University
of Massachusetts, Amherst, 2010.

[23] P. P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and
A. Zaslavsky. Internet of things platform for smart farming: Experiences
and lessons learnt. Sensors, 2016.

[24] F. Jia, D. Zhang, T. Cao, S. Jiang, Y. Liu, J. Ren, and Y. Zhang. CoDL:
efficient cpu-gpu co-execution for deep learning inference on mobile
devices. In Proc. of ACM MobiSys, 2022.

[25] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images. Technical Report, 2009.

[26] Y. D. Kwon, J. Chauhan, and C. Mascolo. YONO: Modeling mul-
tiple heterogeneous neural networks on microcontrollers. In Proc. of
IEEE/ACM IPSN, 2022.

[27] L. Lai, N. Suda, and V. Chandra. CMSIS-NN: Efficient neural network
kernels for Arm Cortex-M CPUs. arXiv preprint arXiv:1801.06601,
2018.

[28] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning
filters for efficient convnets. In Proc. of ICLR, 2017.

[29] E. Liberis and N. D. Lane. Neural networks on microcontrollers:
saving memory at inference via operator reordering. arXiv preprint
arXiv:1910.05110, 2019.

[30] J. Lin, W.-M. Chen, Y. Lin, C. Gan, S. Han, et al. Mcunet: Tiny deep
learning on iot devices. In Proc. of ACM NeurIPS, 2020.

[31] T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi. Dynamic
model pruning with feedback. In Proc. of ICLR, 2020.

[32] X. Ma, S. Lin, S. Ye, Z. He, L. Zhang, G. Yuan, S. H. Tan, Z. Li, D. Fan,
X. Qian, et al. Non-structured dnn weight pruning–is it beneficial in
any platform? IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[33] J. Marsh. Arm® Helium™ technology M-Profile Vector Extension
(MVE) for Arm® Cortex®-M processors: Reference book, 2020.

[34] F. Meng, H. Cheng, K. Li, H. Luo, X. Guo, G. Lu, and X. Sun. Pruning
filter in filter. In Proc. of ACM NeurIPS, 2020.

[35] H. Miao and F. X. Lin. Enabling large neural networks on tiny
microcontrollers with swapping. arXiv preprint arXiv:2101.08744, 2021.

[36] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning
convolutional neural networks for resource efficient inference. In
Proc. of ICLR, 2017.

[37] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and
B. Ren. Patdnn: Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning. In Proc. of the ACM ASPLOS, 2020.

[38] R. Pi. Raspberry pi 3 model b. https://www.raspberrypi.org, 2015.
[39] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:

Unified, real-time object detection. In Proc. of IEEE CVPR, 2016.
[40] A. N. Roshan, B. Gokulapriyan, C. Siddarth, and P. Kokil. Adaptive

traffic control with tinyml. In Proc. of IEEE WiSPNET, 2021.
[41] G. E. Santagati and T. Melodia. An implantable low-power ultrasonic

platform for the internet of medical things. In Proc. of IEEE INFOCOM,
2017.

[42] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[43] STMicroelectronics. Stm32 high performance mcus.
https://www.st.com/en/microcontrollers-microprocessors/
stm32-high-performance-mcus.html, 2019.

[44] Y. Sui, M. Yin, Y. Xie, H. Phan, S. Aliari Zonouz, and B. Yuan. Chip:
Channel independence-based pruning for compact neural networks. In
Proc. of NeurIPS, 2021.

[45] A. Varshney, W. Yan, and P. Dutta. Judo: addressing the energy
asymmetry of wireless embedded systems through tunnel diode based
wireless transmitters. In Proc. of ACM Mobisys, 2022.

[46] M. Wang, S. Ding, T. Cao, Y. Liu, and F. Xu. Asymo: scalable and
efficient deep-learning inference on asymmetric mobile cpus. In Proc. of
ACM MobiCom, 2021.

[47] Y. Wang, J. Shen, and Y. Zheng. Push the limit of acoustic gesture
recognition. In Proc. of IEEE INFOCOM, 2020.

[48] P. Warden and D. Situnayake. Tinyml: Machine learning with tensorflow
lite on arduino and ultra-low-power microcontrollers. O’Reilly Media,
2019.

[49] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured
sparsity in deep neural networks. In Proc. of ACM NIPS, 2016.

[50] H. Xu, P. Zhou, R. Tan, M. Li, and G. Shen. Limu-bert: Unleashing
the potential of unlabeled data for imu sensing applications. In Proc. of
ACM SenSys, 2021.

[51] X. Zhang, A. Andreyev, C. Zumpf, M. C. Negri, S. Guha, and M. Ghosh.
Thoreau: A subterranean wireless sensing network for agriculture and
the environment. In Proc. of IEEE INFOCOM Workshops, 2017.

[52] Y. Zhang, N. Suda, L. Lai, and V. Chandra. Hello edge: Keyword
spotting on microcontrollers. arXiv preprint arXiv:1711.07128, 2017.

